Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(8): 3980-3992, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482731

RESUMO

Ochratoxin A (OTA), commonly found in various foods, significantly impacts the health of humans and animals, especially their kidneys. Our study explores OTA's effects on the gut microbiota and kidney damage while examining how postbiotics offer protection. Using metagenomic sequencing, we observed that OTA increased the potential gut pathogens such as Alistipes, elevating detrimental metabolites and inflammation. Also, OTA inhibited the Nrf2/HO-1 pathway, reducing kidney ROS elimination and leading to cellular ferroptosis and subsequent kidney damage. Postbiotics mitigate OTA's effects by downregulating the abundance of the assimilatory sulfate reduction IV pathway and virulence factors associated with iron uptake and relieving the inhibition of OTA on Nrf2/HO-1, restoring ROS-clearing capabilities and thereby alleviating chronic OTA-induced kidney damage. Understanding the OTA-gut-kidney link provides new approaches for preventing kidney damage, with postbiotics showing promise as a preventive treatment.


Assuntos
Microbioma Gastrointestinal , Rim , Ocratoxinas , Ocratoxinas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Masculino , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Espécies Reativas de Oxigênio/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 910907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966076

RESUMO

Background: Diabetic kidney disease (DKD), one of the main complications of diabetes mellitus (DM), has become a frequent cause of end-stage renal disease. A clinically convenient, non-invasive approach for monitoring the development of DKD would benefit the overall life quality of patients with DM and contribute to lower medical burdens through promoting preventive interventions. Methods: We utilized 5hmC-Seal to profile genome-wide 5-hydroxymethylcytosines in plasma cell-free DNA (cfDNA). Candidate genes were identified by intersecting the differentially hydroxymethylated genes and differentially expressed genes from the GSE30528 and GSE30529. Then, a protein interaction network was constructed for the candidate genes, and the hub genes were identified by the MCODE and cytoHubba algorithm. The correlation analysis between the hydroxymethylation level of the hub genes and estimated glomerular filtration rate (eGFR) was carried out. Finally, we demonstrated differences in expression levels of the protein was verified by constructing a mouse model of DKD. In addition, we constructed a network of interactions between drugs and hub genes using the Comparative Toxicogenomics Database. Results: This study found that there were significant differences in the overall distribution of 5hmC in plasma of patients with DKD, and an alteration of hydroxymethylation levels in genomic regions involved in inflammatory pathways which participate in the immune response. The final 5 hub genes, including (CTNNB1, MYD88, CD28, VCAM1, CD44) were confirmed. Further analysis indicated that this 5-gene signature showed a good capacity to distinguish between DKD and DM, and was found that protein levels were increased in renal tissue of DKD mice. Correlation analysis indicated that the hydroxymethylation level of 5 hub genes were nagatively correlated with eGFR. Toxicogenomics analysis showed that a variety of drugs for the treatment of DKD can reduce the expression levels of 4 hub genes (CD44, MYD88, VCAM1, CTNNB1). Conclusions: The 5hmC-Seal assay was successfully applied to the plasma cfDNA samples from a cohort of DM patients with or without DKD. Altered 5hmC signatures indicate that 5hmC-Seal has the potential to be a non-invasive epigenetic tool for monitoring the development of DKD and it provides new insight for the future molecularly targeted anti-inflammation therapeutic strategies of DKD.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus , Nefropatias Diabéticas , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Ácidos Nucleicos Livres/genética , Nefropatias Diabéticas/genética , Humanos , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...